Integration of Metabolism
References

Harvey, RA and Ferrier, DR. Biochemistry 5th ed
Lippincott’s Illustrated Reviews (2011)
Unit V Chapters 23, 24, 25 pp 307-356
Objectives

1. Recognize that Integration is controlled mainly via hormonal action:

 A. Insulin
 i. Structure
 ii. Synthesis
 iii. Regulation of secretion
 a. Stimulants
 b. Inhibitors
 iv. Metabolic effects
 v. Mechanism of action

 B. Glucagon
 i. Regulations of secretions
 a. Stimulants
 b. Inhibitors
 ii. Metabolic effects
 iii. Mechanism of action
2. Recognize symptoms and types of Hypoglycemia
 A. Relate to ethanol consumption

3. Recognize that 4 major organs function in Metabolism
 A. Liver
 i. CHO Metabolism
 ii. Fat Metabolism
 iii. Amino Acid Metabolism
 B. Adipose Tissue
 i. CHO Metabolism
 ii. Fat Metabolism
 C. Muscle
 i. CHO Metabolism
 ii. Fat Metabolism
 iii. Amino Acid Metabolism
 D. Brain
 i. CHO Metabolism
 ii. Fat Metabolism
4. Interpret and Predict changes occurring in these 4 organs in the Fasted State

5. Define and Recognize types of Diabetes:
 a. Type I
 i. Diagnosis
 ii. Metabolic changes
 iii. Treatment
 b. Type II
 i. Insulin resistance
 ii. Metabolic changes
 iii. Treatment
Metabolic Processes

- Glycogenolysis
- Gluconeogenesis
- Fatty Acid Synthesis
- Lipogenesis
- TCA Cycle Activity
- Amino Acid Oxidation
- Proteolysis

- Glycogenesis
- Glycolysis
- Lipolysis
- Glutaminolysis
- Ketogenesis
- Protein Synthesis
- Urea Synthesis
Cell macromolecules
- Proteins
- Polysaccharides
- Lipids
- Nucleic acids

Energy-containing nutrients
- Carbohydrates
- Fats
- Proteins

Anabolism

Catabolism

ADP + HPO$_4^{2-}$ → NAD$^+$ → NADP$^+$ → FAD

ATP
NADH
NADPH
FADH$_2$

Chemical energy

Precursor molecules
- Amino acids
- Sugars
- Fatty acids
- Nitrogenous bases

Energy-depleted end products
- CO$_2$
- H$_2$O
- NH$_3$
FIGURE 16-15 Role of the citric acid cycle in anabolism. Intermediates of the citric acid cycle are drawn off as precursors in many biosynthetic pathways. Shown in red are four anaplerotic pathways that replenish depleted cycle intermediates (see Table 16-2).
Figure 21-1. The major pathways of fuel metabolism in mammals.
Metabolism
The “Big” Picture

- Total available genes are the same for each cell but only a fraction of them are expressed (effective “genome” of that cell type).
- Of these expressed genes, some are used throughout the life of the cell but others (i.e., control of cell timing) are present only transiently. The set of proteins recovered at any moment in the life of a cell is called the “proteome.”
- The complex set of small molecules in a cell represents its "metabolome." The metabolome is constantly changing. Maintaining the elements of the metabolome within certain ranges is called “homeostasis.”
Maintenance of Homeostasis

• In humans about 4,000 genes (12% of total) encode regulatory proteins including a variety of receptors, regulators of gene expression, and more than 500 different protein kinases.

• In many cases, the regulatory mechanisms overlap, one enzyme is subject to regulation by several different mechanisms.

• Homeostasis in living organisms occurs far from equilibrium which is a condition referred to as “steady state.” This requires expenditure of energy which is ATP.
Importance of ATP as Energy Source

- In a typical cell, ATP is consumed within 1 minute of its formation.
- Although total ATP in the body is only about 100g, the turnover is very high.
- For example, a resting human consumes about 40 Kg of ATP in 24 hrs.
- During strenuous exercise, the rate of utilization of ATP may be as high as 0.5 Kg/min and for a 2 hr run, 60 Kg (132#) are utilized.
- Motion, active transport, biosynthesis, etc require ATP as well. On the average an individual turns over his body weight in ATP every day.
- Clearly, mechanisms for regenerating ATP are vital.
Ranges can be broad such as glucose (to be discussed later) or narrow such as intracellular ATP concentration. Example of ATP control is the “Energy Charge Value”
Energy charge = \(\frac{1}{2} \left(\frac{2 [ATP] + [ADP]}{[ATP] + [ADP] + [AMP]} \right) \)

Figure 25.5 Relative concentrations of AMP, ADP, and ATP as a function of energy charge. (This graph was constructed assuming that the adenylate kinase reaction is at equilibrium and that \(\Delta G^\circ \) for the reaction is \(-473 \text{ J/mol}\); \(K_{eq} = 1.2 \).)
Figure 25.6 Responses of regulatory enzymes to variation in energy charge. Enzymes in catabolic pathways have as their ultimate metabolic purpose the regeneration of ATP from ADP. Such enzymes show an R pattern of response to energy charge. Enzymes in biosynthetic pathways utilize ATP to drive anabolic reactions; these enzymes follow the U curve in response to energy charge.

Figure 25.7 The oscillation of energy charge (E.C.) about a steady-state value as a consequence of the offsetting influences of R and U processes on the production and consumption of ATP. As E.C. increases, the rates of R reactions decline, but U reactions go faster. ATP is consumed, and E.C. drops. Below the point of intersection, R processes are more active and U processes are slower, so E.C. recovers. Energy charge oscillates about a steady-state value determined by the intersection point of the R and U curves.
Figure 23.1
Mechanisms of communication between four major tissues.
Figure 23.10
Opposing actions of insulin and glucagon plus epinephrine.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 23.2
Islets of Langerhans.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 23.3
A. Structure of insulin. B. Formation of human insulin from preproinsulin.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 23.5
Changes in blood levels of glucose, insulin, and glucagon after ingestion of a carbohydrate-rich meal.
Figure 23.6
Regulation of insulin release from pancreatic β cells.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 23.11
Regulation of glucagon release from pancreatic α cells.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 23.13
A. Actions of some of the glucoregulatory hormones in response to low blood glucose. B. Glycemic thresholds for the various responses to hypoglycemia. + = Weak stimulation; ++ = moderate stimulation; +++ = strong stimulation; 0 = no effect.

Copyright © 2005 Lippincott Williams & Wilkins
HYPOGLYCEMIA

1. Insulin Induced
2. Postprandial
3. Fasting
4. Alcohol Intoxication
A. Normal gluconeogenesis in the absence of ethanol consumption. B. Inhibition of gluconeogenesis resulting from hepatic metabolism of ethanol.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 23.1
Mechanisms of communication between four major tissues.

Copyright © 2005 Lippincott Williams & Wilkins
The liver responds to high blood glucose levels by increasing the phosphorylation of glucose by glucokinase, which has a high \(K_m \) for glucose. Because of an abundance of GLUT-2 glucose transporters, glucose uptake by the hepatocyte is not rate limiting.

Figure 24.3
Major metabolic pathways in liver in the absorptive state. [Note: The numbers in circles, which appear both on the figure and in the text, indicate important pathways for carbohydrate, fat, or protein metabolism.] Key: **Blue text** = intermediates of carbohydrate metabolism; **Brown text** = intermediates of lipid metabolism; **Green text** = intermediates of protein metabolism.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 24.5
Major metabolic pathways in adipose tissue in the absorptive state. [Note: The numbers in the circles, which appear both on the figure and in the corresponding text, indicate important pathways for adipose tissue metabolism.]

The depot fat in the adipose tissue is derived from dietary fatty acids (delivered by chylomicrons) and by the endogenous synthesis of fatty acids mostly in the liver (delivered by VLDL).
Figure 24.6
Major metabolic pathways in skeletal muscle in the absorptive state. [Note: The numbers in circles, which appear both on the figure and in the text, indicate important pathways for carbohydrate or protein metabolism.]

Copyright © 2005 Lippincott Williams & Wilkins
Of the fuels circulating in the blood, only glucose can penetrate the blood-brain barrier.

Figure 24.7
Major metabolic pathways in brain in the absorptive state. [Note: The numbers in circles, which appear both on the figure and in the text, indicate important pathways for carbohydrate metabolism.]

Copyright © 2005 Lippincott Williams & Wilkins
Table 22-5 Available metabolic fuels in a normal 70 kg man and in an obese man at the beginning of a fast

<table>
<thead>
<tr>
<th>Type of fuel</th>
<th>Weight (kg)</th>
<th>Caloric equivalent (thousands of kcal (kJ))</th>
<th>Estimated survival time (months)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal 70 kg man:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triacylglycerols (adipose tissue)</td>
<td>15</td>
<td>141 (589)</td>
<td></td>
</tr>
<tr>
<td>Proteins (mainly muscle)</td>
<td>6</td>
<td>24 (100)</td>
<td></td>
</tr>
<tr>
<td>Glycogen (muscle, liver)</td>
<td>0.225</td>
<td>0.90 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Circulating fuels (glucose, fatty acids, triacylglycerols, etc.)</td>
<td>0.023</td>
<td>0.10 (0.42)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>166 (694)</td>
<td></td>
</tr>
<tr>
<td>Obese man:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triacylglycerols (adipose tissue)</td>
<td>80</td>
<td>752 (3,140)</td>
<td></td>
</tr>
<tr>
<td>Proteins (mainly muscle)</td>
<td>8</td>
<td>32 (134)</td>
<td></td>
</tr>
<tr>
<td>Glycogen (muscle, liver)</td>
<td>0.23</td>
<td>0.92 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Circulating fuels</td>
<td>0.025</td>
<td>0.11 (0.46)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>785 (3,280)</td>
<td>14</td>
</tr>
</tbody>
</table>

* Survival time is calculated on the assumption of a basal energy expenditure of 1,800 kcal/day.
Figure 24.10
Sources of blood glucose after ingestion of 100 g of glucose.

Copyright © 2005 Lippincott Williams & Wilkins
TABLE 20.2 Substrate and Hormone Levels in Blood of Well-Fed, Fasting, and Starving Humans

<table>
<thead>
<tr>
<th>Hormone or Substrate (units)</th>
<th>Very Well Fed</th>
<th>Postabsorptive 12 h</th>
<th>Fasted 3 days</th>
<th>Starved 5 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin (μU mL⁻¹)</td>
<td>40</td>
<td>15</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Glucagon (pg mL⁻¹)</td>
<td>80</td>
<td>100</td>
<td>150</td>
<td>120</td>
</tr>
<tr>
<td>Insulin/glucagon ratio (μU pg⁻¹)</td>
<td>0.50</td>
<td>0.15</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Glucose (mM)</td>
<td>6.1</td>
<td>4.8</td>
<td>3.8</td>
<td>3.6</td>
</tr>
<tr>
<td>Fatty acids (mM)</td>
<td>0.14</td>
<td>0.6</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Acetoacetate (mM)</td>
<td>0.04</td>
<td>0.05</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>β-Hydroxybutyrate (mM)</td>
<td>0.03</td>
<td>0.10</td>
<td>1.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Lactate (mM)</td>
<td>2.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Pyruvate (mM)</td>
<td>0.25</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Alanine (mM)</td>
<td>0.8</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>ATP equivalents (mM)</td>
<td>313</td>
<td>290</td>
<td>380</td>
<td>537</td>
</tr>
</tbody>
</table>

Data are for normal-weight subjects except for the 5-week starvation values, which are from obese subjects undergoing therapeutic starvation. ATP equivalents were calculated on the basis of the ATP yield expected on complete oxidation of each substrate to CO₂ and H₂O: 38 molecules of ATP for each molecule of glucose; 144 for the average fatty acid (oleate); 23 for acetoacetate; 26 for β-hydroxybutyrate; 18 for lactate; 15 for pyruvate; and 13 (corrected for urea formation) for alanine.
RESPIRATION QUOTIENT (RQ)

def: Vol of CO$_2$ produced divided by the volume of O$_2$ consumed for Carbohydrate (i.e. glucose)

\[
\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{E}
\]

\[
\text{RQ} = \frac{6 \text{ CO}_2}{6 \text{ O}_2} = 1
\]

For lipid (i.e. 2 molecules stearic acid + 1 molecule palmitic acid)

\[
2 (\text{C}_{55} \text{H}_{106} \text{O}_6) + 157 \text{ O}_2 \rightarrow 110 \text{CO}_2 + 106 \text{H}_2\text{O} + \text{E}
\]

\[
\text{RQ} = \frac{110 \text{ CO}_2}{157 \text{ O}_2} = 0.70
\]

For protein \(\text{RQ} = 0.80 \)
Figure 24.11
Major metabolic pathways in liver during starvation. The numbers in circles, which appear both on the figure and in the corresponding citation in the text, indicate important metabolic pathways for carbohydrate or fat.
Figure 24.13
Major metabolic pathways in adipose tissue during starvation. The numbers in the circles, which appear both on the figure and in the corresponding citation in the text, indicate important pathways for fat metabolism.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 24.14
Major metabolic pathways in skeletal muscle during starvation. The numbers in the circles, which appear both on the figure and in the corresponding citation in the text, indicate important pathways for fat or protein metabolism.
Figure 24.15
Major metabolic pathways in the brain during starvation. The numbers in the circles, which appear both on the figure and in the corresponding citation in the text, indicate important pathways for metabolism of fat or carbohydrates.
Figure 21-5. **The Cori cycle.** Lactate produced by muscle glycolysis is transported by the bloodstream to the liver, where it is converted to glucose by gluconeogenesis. The bloodstream carries the glucose back to the muscle, where it may be stored as glycogen. ● See the Animated Figures.
Figure 21-6. The glucose–alanine cycle.
Pyruvate produced by muscle glycolysis is the amino-group acceptor for muscle aminotransferases. The resulting alanine is transported by the bloodstream to the liver, where it is converted back to pyruvate (its amino group is disposed of via urea synthesis). The pyruvate is a substrate for gluconeogenesis, and the bloodstream carries the resulting glucose back to the muscles.

See the Animated Figures.
Figure 24.16
Intertissue relationships during starvation.
<table>
<thead>
<tr>
<th></th>
<th>Type 1 Diabetes</th>
<th>Type 2 Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE OF ONSET</td>
<td>Usually during childhood or puberty; symptoms develop rapidly</td>
<td>Frequently after age 35; symptoms develop gradually</td>
</tr>
<tr>
<td>NUTRITIONAL STATUS AT</td>
<td>Frequently undernourished</td>
<td>Obesity usually present</td>
</tr>
<tr>
<td>TIME OF DISEASE ONSET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREVALENCE</td>
<td>900,000 = 10% of diagnosed diabetics</td>
<td>10 Million = 90% of diagnosed diabetics</td>
</tr>
<tr>
<td>GENETIC PREDISPOSITION</td>
<td>Moderate</td>
<td>Very strong</td>
</tr>
<tr>
<td>DEFECT OR DEFICIENCY</td>
<td>β Cells are destroyed, eliminating production of insulin</td>
<td>Insulin resistance combined with inability of β cells to produce appropriate quantities of insulin</td>
</tr>
<tr>
<td>FREQUENCY OF KETOSIS</td>
<td>Common</td>
<td>Rare</td>
</tr>
<tr>
<td>PLASMA INSULIN</td>
<td>Low to absent</td>
<td>High early in disease; low in disease of long duration</td>
</tr>
<tr>
<td>ACUTE COMPLICATIONS</td>
<td>Ketoacidosis</td>
<td>Hyperosmolar coma</td>
</tr>
<tr>
<td>TREATMENT WITH ORAL</td>
<td>Unresponsive</td>
<td>Responsive</td>
</tr>
<tr>
<td>HYPOGLYCEMIC DRUGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREATMENT</td>
<td>Insulin is always necessary</td>
<td>Diet, exercise, oral hypoglycemic drugs, +/- insulin</td>
</tr>
</tbody>
</table>

Figure 25.1
Comparison of type 1 and type 2 diabetes.

Copyright © 2005 Lippincott Williams & Wilkins
INITIATING EVENT
Exposure to a virus or toxin may start the process of β cell destruction in individuals with a genetic predisposition.

SLOW β CELL DESTRUCTION
Over a period of years β cells are destroyed, resulting in decreased production of insulin.

CLINICAL DISEASE
When the insulin secretory capacity falls below a threshold, the symptoms of type 1 diabetes suddenly appear.

Figure 25.2
Insulin secretory capacity during onset of type 1 diabetes. [Note: Rate of autoimmune destruction of β cells may be faster or slower than shown.]
Figure 25.3
Intertissue relationships in type 1 diabetes.
Figure 25.6
Major factors contributing to hyperglycemia observed in type 2 diabetes.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 25.7
Blood insulin and glucose levels in normal weight and obese subjects.

Copyright © 2005 Lippincott Williams & Wilkins
Figure 25.8
Progression of blood glucose and insulin levels in patients with type 2 diabetes.

1. Obese individuals develop insulin resistance which may precede the development of diabetes by ten or more years.
2. Patients diagnosed with type 2 diabetes initially show insulin resistance with compensatory hyperinsulinemia.
3. Subsequently β cell dysfunction occurs, marked by declining insulin secretion and worsening hyperglycemia.
Figure 25.9
Typical progression of type 2 diabetes.
Figure 25.10
Intertissue relationships in type 2 diabetes.

Copyright © 2005 Lippincott Williams & Wilkins
The Glycation Reaction

\[
\text{PROTEIN-NH}_2 + \text{HC-CH} \xrightarrow{\text{Amadori Rearrangement}} \text{HC-OH} \xrightarrow{\text{Ketoamine}} \text{HC-OH} \xrightarrow{\text{Glycated Protein}} \text{CH}_2\text{NH-PROTEIN-NH}_2
\]

Glucose \quad \text{Schiff-Base Aldimine} \quad \text{Ketoamine} \quad \text{Glycated Protein}
The benefits of an improvement in glycemic control occurred over the entire range of HbA$_{1c}$ values; thus, any improvement in glycemic control is beneficial.

Figure 25.11
Relationship of glycemic control and diabetic retinopathy.

Copyright © 2006 Lippincott Williams & Wilkins
Figure 25.12

Obesity and sedentary lifestyle promote the development of type 2 diabetes.