Introduction to Carbohydrate and Structure

Part I: Carbohydrate Structures (General Information)[©]

Dipak K. Banerjee, Ph.D.

Professor

Department of Biochemistry, Room: A-606

School of Medicine

University of Puerto Rico

Email: dipak.banerjee@upr.edu

Carbohydrate Nomenclature[©]

- Monosaccharides (classification/configuration /conformation)
- Disaccharides/Oligosaccharides
- Polysaccharides: Homopolysaccharides & Heteropolysaccharides [structural (cellulose & chitin), storage (starch & glycogen), functional (glycoproteins, glycosaminoglycans & glycolipids)]
- **Glycoconjugates** (glycolipids, proteoglycans, peptidoglycan, and glycoproteins)

MONOSACCHARIDES©

Key Concept Map for Structure of Monosaccharides©

Chirality: Ball and Stick Model®

Ball-and-stick models

Fischer projection formulas

Perspective formulas

D/L-Aldoses (three - six carbons)©

D-Aldoses

Three carbons H-C-OH CH₂OH p-Glyceraldehyde

D-Aldoses

D-Aldoses

Six carbons

Epimers[©]

D-Galactose (epimer at C-4)

D/L-Ketoses (three - six carbons)©

D-Ketoses

Three carbons

Dihydroxyacetone |

D-Ketoses

Configuration of D-glucose©

Configuration and Conformation of D-glucose[©]

Hexose Derivatives Important in Biology[©]

TABLE 7–1 Abbreviations for Common Monosaccharides and Some of Their Derivatives

Abequose	Abe	Glucuronic acid	GlcA
Arabinose	Ara	Galactosamine	GalN
Fructose	Fru	Glucosamine	GlcN
Fucose	Fuc	N-Acetylgalactosamine	GalNAc
Galactose	Gal	N-Acetylglucosamine	GlcNAc
Glucose	Glc	Iduronic acid	IdoA
Mannose	Man	Muramic acid	Mur
Rhamnose	Rha	N-Acetylmuramic acid	Mur2Ac
Ribose	Rib	N-Acetylneuraminic acid	Neu5Ac
Xylose	Xyl	(a sialic acid)	

DISACCHARIDES©

Formation of Maltose and Some Common Disaccharides[©]

 α -D-glucopyranosyl-(1 \rightarrow 4)-D-glucopyranose

Lactose (\$\beta\$ form) β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-glucopyranose Gal($\beta 1 \rightarrow 4$)Glc

Sucrose α -p-glucopyranosyl β -p-fructofuranoside $Glc(\alpha 1 \leftrightarrow 2\beta)Fru$

Trehalose α -p-glucopyranosyl α -p-glucopyranoside $Glc(\alpha 1 \leftrightarrow 1\alpha)Glc$

Summary[©]

- •Sugars are compounds containing an aldehyde or ketone group and two or more hydroxyl groups.
- Monosaccharides contain several chiral carbons and therefore exist in a variety of stereochemical forms. Epimers are sugars that differ in configuration at only one carbon atom.
- Monosaccharides form hemiacetals or hemiketals, creating a cyclic structure, and is represented as a Howarth perspective formula. The carbon atom in the aldehyde or ketone (the anomeric carbon) can assume either α or β configuration, which are interconvertible by mutarotation. In the linear form, which is in equilibrium with the cyclized forms, the anomeric carbon is easily oxidized.
- A hydroxyl group of one monosaccahride can add to the anomeric carbon of a second monosaccharide to form an acetal, this glycosidic bond protects the anomeric carbon from oxidation.

Summary[©]

- Oligosaccharides are short polymers of several monosaccharides joined by glycosidic bonds.
- The common nomenclature for di- or oligosaccharides specifies the order of monosaccharide units, the configuration at each anomeric carbon, and the carbon atoms involved in the glycosidic linkage(s).

POLYSACCHARIDES©

- 1. Homopolysaccharides
- 2. Heteropolysaccarides

Homopolysaccharides

Unbranched

Branched

Heteropolysaccharides

Two
monomer
types,
unbranched

Multiple monomer types, branched

Homopolysacharides As Stored Forms

of Fuel®

Structural Roles of Homopolysaccaharies[©]

Chitin

Cellulose $(\beta 1 \rightarrow 4)$ Glc repeats

The Structures of Cellulose and Starch (α-amylose)[©]

 $(\beta 1 \rightarrow 4)$ -linked D-glucose units

Glycogen[©]

