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Figure 10.1

The gluconeogenesis pathway shown
as part of the essential pathways of
energy metabolism. The numbered
reactions are unique to gluconeo-
genesis. (See Figure 8.2, p. 90 for a
more detailed view of the metabolic
map.)
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Figure 8.23

Effect of insulin and glucagon on the synthesis of key
enzymes of glycolysis in liver.
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The Cori cycle.
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Lactate 1s released by cells lacking
mitochondria and by exercising skeletal
muscle. Cori cycle lactate to glucose in
the liver.

Amino acids: main source during a fast.
a-ketoacids they can enter the TCA
cycle and converted to OAA and then to
PEP
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Activation and transfer of CO2 to pyruvate, followed by transport of oxaloacetate to the cytosol and subsequent
decarboxylation.
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Dephosphorylation of fructose 1,6-bisphosphate.
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Adenosine Monophosphate (-)
found in Liver and Kidney FBP1




High glucagon/insulin ratio causes
elevated cAMP and increased
levels of active protein kinase A.
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Decreased levels of fructose 2,6-bisphosphate
decreases the inhibition of FBP-1, which
leads to an increased rate of gluconeogenesis.

Phosphorylated PFK-2 is inactive,
whereas FBP-2 is active; this
impedes the formation of fructose
2,6-bisphosphate.

3

Figure 10.5

Effect of elevated glucagon on the intracellular concentration of fructose 2,6-bisphosphate in the liver.
PFK-2 = phosphofructokinase-2, FBP-2 = Fructose bisphospate phosphatase-2.
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Figure 10.6
Dephosphorylation of glucose 6-phosphate.
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] This process

requieres 2
enzymes. One that
translocate the ER
known as glucose 6
phosphate
translocase and
GO6P found only in
glucogenic cells.
This enzyme is also
required for the
final step of
glycogen
degradation.
Deficiency
Responsible for 1a
type glycogen
storage disease.
Von Gierke disease
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Figure 10.7

Summary of the reactions of glycolysis and
gluconeogenesis, showing the energy requirements
of gluconeogenesis.
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Look for a mistake in
this slide

To convert pyruvate to
glucose ;11 reactions, 7
reversible 4 irreversible.
There are 3 irreversible
reactions in glycolysis
which are circumvented
by which enzymes. One
carboxy and
decarbolylation. How
many high energy
phosphates and NADH
for a formation of a
glucose molecule?
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Covalent modification of pyruvate kinase results in inactivation of the
enzyme. OAA = oxaloacetate.
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tahle 20-3

Glucogenic Amino Acids, Grouped

by Site of Entry’

Pyruvate Succinyl-CoA
Alanine Isoleucine’
Cysteine Methionine
Glycine Threonine
Serine Valine
Tryptophan'

Fumarate
a-Ketoglutarate Phenylalanine’
Arginine Tyrosine!
Glutamate
Glutamine Oxaloacetate
Histidine Asparagine
Proline Aspartate

*These amino acids are precursors of blood glucose or liver
glycogen because they can be converted to pyruvate or citric
acid cycle intermediates. Only leucine and lysine are unable
to furnish carbon for net glucose synthesis.

"These amino acids are also ketogenic (see Fig. 18-19).
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Figure 10.9
Key concept map for gluconeogenesis.
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