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Key Concepts

Metabolic pathway are controlled in
different nutritional and disease
states to maintain sources of energy
and amino acids in the blood for all
tissues.

Pathways that remove excess fuels
from the blood (glycogenesis,
glycolysis, fatty acid synthesis and
lipogenesis) are active in the fed
state.

Pathways that maintain adequate
levels of fuel in the blood
(glycogenolysis, gluconeogenesis,
lipolysis, proteolysis, and
ketogenesis) are active in the starved
state.

Pathways are controlled by
substrate availability, allosteric
effectors, covalent
modification, and induction or
repression of key enzymes.

The changes in metabolism that
accompany common disease
state are variations on the
themes that function in the fed
and fasted states
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Figure 21.1 Humans can use a variable fuel input to meet a variable metabolic demand.
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Metabolic Processes

Glycogenolysis
Gluconeogenesis

Fatty Acid Synthesis
Lipogenesis

TCA Cycle Activity
Amino Acid Oxidation

Proteolysis

Glycogenesis
Glycolysis
Lipolysis
Glutaminolysis
Ketogenesis
Protein Synthesis
Urea Synthesis
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Figure 21.2 Disposition of glucose, amino acids, and fat by various tissues in the well-fed state.
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Figure 21.3 Metabolic interrelationships of major tissues in early fasting state.
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Fatty acids** can not be
used for the synthesis of
Glucose.

Alanine and Glutamine
released in large quantities
others go to intermediate
(puruvate, aKetoglutarate)
which also can yield
Glutamine and Alanine.
Enterocytes use Glutamine
to form pyrimidine and
purine. aKetoglutarate to
malate to pyruvate by
malic enzyme and then to
alanine. Ketone bodies can
reduce alanine release and
proteolysis and branched
AA oxidation decreasing
muscle wasting.
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Figure 21.4 Metabolic interrelationships of major tissues in fasting state.
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Figure 21.5 Glutamine catabolism by rapidly dividing cells.
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Intestinal epithelium
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Figure 21.6 Gut and kidney function together in synthesis of arginine from glutamine. This controls urea cycle
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Figure 21.7 Kidney and liver provide carnitine for other tissues.
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Energy requirements, reserves and caloric Homeostasis

The average person consumes 180-280 g of
carbohydrates, 70-100g of protein and 70-100g of fat
daily. This meets a daily requirement of 1600-2400

kcal.



Glucose levels TABLE 21.1 + Energy Reserves

need to be of Humans?
well regulated
<15 mM Fuel Reserves
coma and Stored Fuel Tissue (2) (kcal)
death ‘ . |
| Glycogen  Liver 70 280

Hyperglycemia n

yPEIJTY Glycogen Muscle 120 480
needs to also be -
avoided since Glucose Body fluids 20 80
glucose will be Fat Adipose 15,000 135,000
lost in urine and Protein Muscle 6,000 24,000
blood vol altered
much glucose “Dara are for a normal subject weighing 70 kg.
results in Carbohydrate supplies 4 kcal/g; fat, 9 kcal/g;
glycation of protein, 4 kal/g.

roteins &

igure
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TABLE 21.2 ¢ Substrate and Hormone Levels in Blood of Well-Fed, Fasting, and

Starving Humans?

Hormone or Very
Substrate (units) Well Fed
Insulin (wU/mL) 40
Glucagon (pg/mL) 80
Insulin/glucagon ratio (uU/pg) 0.50
Glucose (mM) 6.1
Fatty acids (mM) 0.14
Acetoacetate (mM) 0.04
B-Hydroxybutyrate (mM) 0.03
Lactate (mM) 2.5
Pyruvate (mM) 0.25
Alanine (mM) 0.8
ATP equivalents (mM) 262

Postabsorptive
12 hours

15
100

0.15
4.8
0.6
0.05
0.10
0.7
0.06
0.3

235

Fasted
3 days

8

150

0.05
3.8
1.2
0.4
1.4
0.7
0.04
0.3

301

Starved
5 weeks
6
120
0.05
3.6
1.4
1.3
6.0
0.6
0.03
0.1
428

Source: From Ruderman, N. B., Aoki, T. T., and Cahill, G. F. Jr. Gluconeogenesis and its disorders in man. In:
R. W. Hanson and M. A. Mehlman (Eds.), Gluconeogenesis, Its Regulation in Mammalian Species. New York:

Wiley, 1976, p. 515.

“Data are for normal-weight subjects except for the 5-weck starvation values, which are from obese subjects
undergoing therapeutic starvation. ATP equivalents were calculated on the basis of the ATP yield expected on
complete oxidation of each substrate to CO; and H;O: 32 molecules of ATP for each molecule of glucose; 106
for the average fatty acid (palmitate); 19 for acetoacerate; 21.5 for B-hydroxyburyrate; 15 for lactate; 12.5 for

pyruvate; and 13 (corrected for urea formation) for alanine.

“Figure
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Figure 21.8 The five phases of glucose homeostasis.
Reproduced with permission from Ruderman, N. B., Aoki, T. T., and Cahill, G. F., Jr. Gluconeogenesis and its disorders in man, in R. W. Hanson,

and M. A. Mehlman (Eds.), Gluconeogenesis, Its Regulation in Mammalian Species. New York: Wiley, 1976, 515.
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Mechanisms involved in switching liver
metabolism between the well-fed and
starved states



Substrate availability controls metabolic pathways

Fatty acids in blood and entering liver determines
ketogenesis

Glucose synthesis in liver is affected by the rate of
which gluconeogenic substrate enter

In diabetes delivery of amino acids stimulate
gluconeogenesis and exacerbates hyperglycemia.
Failure to supply gluconeogenic substrate explain
some hypoglicemia (pregnancy and advanced
starvation)

Ammonia and amino acids stimulate urea cycle, the
Intestine release citrulline after rich protein meal,
protein deficiency urea formation declines.
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Figure 21.9 Control of hepatic metabolism by allosteric effectors in the well-fed state.
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Figure 21.10 Control of hepatic metabolism by allosteric effectors in the fasting state.
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Regulation of Glycogen Synthesis The
synthesis and degradation of glycogen
are tightly regulated. Glycogen synthase
and glycogen phosphorylase are
allosterically controlled and are
hormonally regulated. Glycogen
synthesis is stimulated when energy
levels and substrate availability are high.
Glycogen degradation is increased
when energy levels and available
glucose supplies are low. In muscle,
contraction requires ATP hence AMP is
accumulated. Ca?™ is released due to
depolarization of nerve impulses. cast
binds to calmodulin (a subunit of
phosphorylase kinase) and activates this
enzyme (glycogen phosphorylase).
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Figure 21.11 Relative activities of acetyl-CoA carboxylase and malonyl-CoA decarboxylase determine the

concentration of malonyl CoA.
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Covalent modifications regulating key
enzymes
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Figure 21.12 Regulation of the activity of key enzymes by covalent modification.
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Figure 21.13 Glucagon and epinephrine stimulate glycogenolysis and gluconeogenesis and inhibit glycolysis and
lipogenesis in liver.
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Figure 21.14 Activation of AMPK shuts down ATP-requiring processes and stimulates ATP-producing processes.
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Figure 21.15 Control of hepatic metabolism by covalent modification in the well-fed state.
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Figure 21.16 Control of hepatic metabolism by covalent modification in the fasting state.
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Figure 21.17 Control of hepatic metabolism by AMPK-mediated phosphorylation during energy deprivation.
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In adipose tissue during well fed Pk, PDHC, Acetyl CoA
carboxylase and hormone sensitive lipase (not found in liver) all
are dephosphorylated. Hormone sensitive lipase is inactive.

Phosphorylation by cAMP Protein Kinase A and low Insulin
levels in blood turn on lipid degradation.

In skeletal muscle, Glycogen synthase, glycogen phosphorylase
PDHC, Acetyl CoA carboxylase, and malonyl CoA
decarboxylase are dephosphorylated in fed state. GLUT4
Insulin stimulated.

In starved state the turn off of PDHC is critical to conserve 3
carbon compounds. This occurs with high levels of Acetyl CoA
and NADH generated by B-oxidation
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Figure 21.18 Hepatic enzymes induced in the well-fed state.
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Figure 21.22 PPAR activation by fatty acids promotes transcription of fatty acid oxidation (FOX) and ketogenesis

genes. Abbreviation: PPRE, PPAR responsive element.
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Figure 21.23 Metabolic interrelationships of tissues in various nutritional, hormonal, and disease states:

Obesity.
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Figure 21.25 Metabolic interrelationships of tissues in type 2 diabetes mellitus.
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Figure 21.26 Metabolic interrelationships of tissues in type 1 diabetes mellitus.
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Figure 21.29 Metabolic interrelationships of tissues in pregnancy.
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Figure 21.30 Metabolic interrelationships of tissues in lactation.
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Figure 21.31 Metabolic interrelationships of tissues in stress and injury.
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Figure 21.34 Metabolic interrelationships of tissues in consumption of alcohol.
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Figure 21.36 Intercellular glutamine cycle of the liver.

Textbook of Biochemistry with Clinical Correlations, 7e edited by Thomas M. Devlin © 2011 John Wiley & Sons, Inc.



Glucose

Fat Liver
Ketone
bodies
Colon
CO,
Undigested
carbohydrate
(fiber)
Bacterial Butyrate
fermentation Propionate
Acetate
—Colonocytes Isobutyrate
Short-chain
fatty acids ™~
CO; + ketone bodies
<@

Figure 21.37 Bacterial fermentation generates fuel for colonocytes.
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