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Figure 8.2

Important reactions of intermediary metabolism. Several important pathways to
be discussed in later chapters are highlighted. Curved reaction arrows ( £3 )
indicate forward and reverse reactions that are catalyzed]by different enzymes.
The strgdght arrows ( €5, ) indicate forward and reverse reactions that are
catalyzed by the same enzyme. Key: Blue text = intermediates of carbohydrate
metabolism; brov = intermediates of lipid metabolism; green text =
intermediates of protenn metabolism.
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Aminotransferase reaction using u-ketoglutarate as the amino-group acceptor.
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o Amino group keeps amino
acids safe from oxidative
breakdown. Removal of this
group is essential for energy
production it is an obligatory
step for catabolism. Nitrogen
can then be incorporated or
excreted.This is done through
transamination or oxidative
deamination, provide amonia
and aspartate sources for the
Urea cycle.

Transamination is funneled
through glutamate. This is done
through the transfer of the a
amino group to a ketoglutarate.
Product a-keto acid and
glutamate. Alanine to pyruvate
and aspartate to oxaloacetate
all amino acids except lysine
and threonina (lose the o amino
throuah deamination.
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Figure 19.11

Oxidative deamination by glutamate dehydrogenase.

Glutamate dehydrogenase the
oxidative deamination

Glutamate only amino acid that
undergoes rapid oxidative
deamination (glutamate
dehydrogenase NH3 + NADH),
where amino groups are
released as ammonia. After a
meal rich in protein the levels of
glutamate in liver are increased
favoring amino acid degradation
and formation of ammonia.
Activators of this enzyme are
ADP and GDP while ATP and

GTP are inhibitors. This reaction
occurs in the mitochondria.
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Figure 19.12
Combined actions of aminotransferase and
glutamate dehydrogenase reactions.
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Figure 19.13
ITransport of ammonia from

Ammonia can be transported to the liver from
other tissues through two mechanisms that
reduce the toxicity of ammonia. One through
Glutamine (most tissues through, glutamine
synthetase). In the liver the glutamine is
converted back to glutamate (Fig. 19.17) by
glutaminase. The second mechanism is used
by muscle, is the transamination of pyruvate to
form alanine (alanine aminotransferase). In the
Liver alanine is converted again to pyruvate

m Alanine aminotransferase

Alanine o-Ketoglutarate

X

Pyruvate Glutamate

B Aspartate aminotransferase

Glutamate

Oxaloacetate
Aspartate ‘X o-Ketoglutarate

>eripheral tissues to the liver. 3
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Reactions catalyzed during amino acid catabolism. A. Alanine

by the same enzyme. Pyruvate
then can be used to form glucose
and this could be used then by
muscles in the glucose-alanine
cycle.
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B Tissues in addition to the liver use
this pathway to make arginine.
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Figure 19.14
Reactions of the urea cycle.
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Reactions of the Urea cycle The
formation of carbamoyl phosphate
(CO2 provides the Carbon for Urea
and free ammonia provides one of
the nitrogen atoms of urea forming
the previous compound Carbamoy!
phosphate synthetase 1) uses an
ATP. This step requires N-
acetylglutamate as activator of the
enzyme. Carbamoyl phosphate
synthetase 2 does not require the
activator and is used in biosynthesis
of pyrimidines. Citrulline is then
formed from L-Ornithine (these two
amino acids are not incorporated into
proteins). Ornithine is regenerated in
each cycle similar to oxaloacetate.
The formation of citrulline liberates an
inorganic phosphate. Notice that
these rxs occur in mitochondrion.
Arginosuccinate is then synthesized
from aspartate in the cytosol as it
condenses with citrulline, the amino
group of aspartate provides 2nd
nitrogen of Urea. Cleavage of

arginosuccinate to yield Arginine & fumarate (arginosuccinate lyase).
Arginine is the precursor of urea,
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Figure 19.15

Flow of nitrogen from amino acids to urea.
Amino groups for urea synthesis are collected
in the form of ammonia and aspartate.
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 OAX to aspartate) Cleavage of

arginine to ornithine and urea
(arginase) this occurs almost
exclusively in liver. Urea diffuses the
liver and transported to the kidneys.
Some go into the intestine where it is
cleaved to NH3 and CO2 by bacterial
urease. In patients with kidney failure
we find high levels of NH3 in blood
(hyperammonemia) due to
reabsorption for which an antibiotic
neomycin is given. (important why
treatment with antibiotics) A summary
of the cycle can observed in this slide.
Oxidative deamination of glutamate
provides the NH3 and transamination
provides aspartate with the other
Nitrogen.
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Figure 19.16

Formation and degradation of N-acetylglutamate, an allosteric activator of carbamoy!
phosphate synthetase |.

This is the rate
limiting step of the
urea cycle since it
could be regulated.
N-acetylglutamate is
synthesized from
acetyl CoA and
glutamate. Arginine
IS an activator. A
protein rich meal will
lead to an increase
rate of urea
synthesis. This
drives the formation
of carbamoyl
phosphate and
urea production.
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Figure 19.17
Hydrolysis of glutamine to form ammonia.
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Figure 19.18
Synthesis of glutamine.
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