TOPIC 35:

REGULATION OF GENE EXPRESSION

Pablo E. Vivas-Mejía, Ph.D.

Sep/2012

Control of gene expression

Constitutive genes: housekeeping

Regulated genes: under some conditions

Operon: DNA + proteins

Polycistronic: genes involved in a particular process

Copyright @ 2011 Wolfers Kluwer Health | Lippincott Williams & Wilkins

Cis-acting elements and trans-acting molecules

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

Common motifs in proteins that binds to DNA:

- 1. Zinc finger domains
- 2. Leucine zipper
- 3. Helix-turn-helix

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

The lactose operon of *E. Coli*

LacZ: β-galactosidase

lacY: permease

lacA: thiogalactoside

transacetylase

lacl: Repressor

cAMP: Cyclic AMP

CAP: Catabolite gene

activator protein

Allolactose: Inducer

A: negative regulation

B: positive regulation

C: catabolite repression

The LacI repressor protein contains a helix-turn-helix motif

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

Lacl expression is constitutive

Attenuation of transcription of the Trp operon when tryptophan is plentiful

Negative regulation: Trp binds to repressor and then their binds to

operator: no proteins synthesis

Positive regulation: The repressor can not binds to the operator:

protein synthesis

Attenuation: Negative regulation. At the RNA level. Rho-

independent termination.

Regulation of transcription by the stringent response to amino acid starvation

Regulation of translation by an excess of ribosomal proteins

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

This protein binds to the Shine-Delgarno sequence located upstream of the initiating AUG codon.

Regulation of gene expression in Eukaryotes

- Transcriptional
- Post-transcriptional

Alternative splicing

RNA stability

Translational efficiency

Combinatorial control of transcription in eukatyotes

The signal to activate transcription can be initiated by intracellular or cell surface receptors

1. Transcriptional regulation by intracellular steroid hormone receptors

2. Transcriptional regulation by receptors located in the cell membrane

Co-transcriptional Regulation

- •Capping at the 5'-end
- •Poly-A at the 3'
- Splicing

Alternative splicing

30,000 genes

100,000 proteins

Copyright © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

Post-transcriptional regulation

RNA editing RNA stability Micro-RNA

RNA editing: one base in the mRNA is altered

Apoprotein B: chylomicrons and VLDP

Apo B-48 Apo B-100

Liver: only B-100

Intestine: B-100 and B-48

- ■In some RNAs more than 50% of adenosine residues are modified.
- •A to I modifications are more frequent.
- ■Modifications are performed by ADARs (adenosine deaminase that act on RNA).

RNA stability: How long time the mRNA remains in the cytosol

Iron metabolism

Transferrin (plasma protein: iron transporter)

Low iron: IRP binds IRE: TfR mRNA is stabilized.

High iron: IRP binds to Fe: TfR mRNA is degraded.

RNA interference: degrade or inhibit mRNA: no protein is produced

RNA translation: protein synthesis

eIF-2: eukaryotic translation initiator factor

When eIF-2 is phosphorylated inhibits the initiation step of translation

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

Regulations by modifications to DNA

- 1. Access to DNA
- 2. Amount of DNA
- 3. Arrangement of DNA
- 4. Mobile DNA elements

1. Access to DNA: chromatin decondensed (euchromatin) vs. condensed (hererochromatin).

The methylation of cytosine in eukaryotic DNA: DNA hypermethylation (CpG island: silencing gene expression.

Copyright © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

2. Amount of DNA

Gene amplification

3. Arrangement of DNA

DNA rearrangements in the generation of immunoglobulins

Immunoglobulins: two light and two heavy chains

Each chain have variable and constant amino acids sequence

Variable: combination of variable (V), diversity (D) and joining (J)

4. Mobil DNA elements

Transposons: DNA sequences that move randomly in the same or to a different chromosome.

Retrotransposons: involve a DNA intermediate

